
Mastering Robotic Arm Manipulation 

with Deep Reinforcement Learning

Arjun Bansal, Ruchi Patel, Kausar Patherya, Ayushi Rajpoot



Table of Contents

Motivation Background
A brief overview of the 

environment and algorithms

Intersecting robotics with 

reinforcement learning

Experiments
A deep-dive into each of the 

3 algorithms

Method
Template to systematically 

weigh the pros and cons

01 02

03 04



Motivation

Robotic Manipulation & RL

This field merges robotics and machine learning to develop adaptive systems, enabling 

robots to learn complex skills like grasping, picking, placing, and assembling through 

trial and error, enhancing flexibility and generalization.

Kuka PyBullet Environment

The Kuka PyBullet environment simulates a robotic arm for pick-and-place tasks with 

realistic physics. It is open-source, models real-world systems, and balances complexity 

with tractability for RL research.

Problem Definition

This environment serves as a testbed to compare RL approaches like A2C, PPO, and 

DQN (value vs. policy, on vs. off-policy), helping researchers choose algorithms for 

similar robotics tasks and inform future development.



Table of Contents

Motivation Background
A brief overview of the 

environment and algorithms

Intersecting robotics with 

reinforcement learning

Experiments
A deep-dive into each of the 

3 algorithms

Method
Template to systematically 

weigh the pros and cons

01 02

03 04



Environment

1
The agent has to decide between seven (2 + 2 + 2 + 1) actions so 

that the manipulator can grasp an object.

2
The velocity for each direction is equal. There is a “height hack” 

where the gripper automatically moves down for each action.

x y

vertical angle offset?

not moving 

at all

3
After picking an action, the agent transitions to a new state from 

the current one, enjoying/suffering rewards in the process.

In this task, the reward is 1 if one of the objects is above height 0.2 

at the end of the episode.
4

The inputs to the agent are (48,48,3) images of the environment 

state. Convolutional neural networks are suited to the task.
5



Algorithms

Advantage Actor-Critic
Simultaneously learns a value function and policy. Employs 

a shared network, enabling efficient learning. Includes 

entropy regularization to prevent premature convergence.

Proximal Policy Optimization
Extracts more information from each batch of experiences, 

improving sample efficiency. Generalized Advantage 

Estimation reduces variance in policy gradient estimates. 

Deep Q-Networks
Learns control policies from high-dimensional input. Uses a 

replay buffer and target network to address stability issues. 

Adaptive decay schedule could lead to adequate exploration.

Reinforcement 

Learning 

Algorithms



Framework

Compare the performance of three RL algorithms ─ A2C, DQN, PPO ─ on 

robotic arm manipulation.

Goal

H1: PPO is expected to excel 

due to its effectiveness in high-

dimensional continuous action 

spaces.

H2: DQN is robust in discrete action spaces and 

effective with visual state representations but 

may fall short in achieving the fine-grained 

control required for precise robotic manipulation, 

making it unlikely to outperform PPO.

H3: A2C may underperform 

compared to PPO and DQN due to 

its synchronous nature, which could 

slow learning in high-dimensional, 

visually driven tasks.

Which algorithm performs best when trained in similar conditions?

The environment setup was standardized across algorithms for fair comparison. Consistent hyperparameters were 

used where applicable. Each algorithm was tested across multiple episodes to account for variability.



Table of Contents

Motivation Background
A brief overview of the 

environment and algorithms

Intersecting robotics with 

reinforcement learning

Experiments
A deep-dive into each of the 

3 algorithms

Method
Template to systematically 

weigh the pros and cons

01 02

03 04



Actor-Critic Framework for Kuka Robot Simulation

Bridging Policy and Value-Based Reinforcement Learning

Algorithm Overview
Actor: Learns the policy π(a∣s;θ) to select actions.

Critic: Estimates the value function V(s;w) to evaluate actions.

Key Insight: Actor improves using feedback from Critic’s value estimates.

1

Why Actor-Critic?
Combines the strengths of policy gradient and value-based methods.

Suitable for continuous action spaces like robotic control.

Improves sample efficiency and policy stability.

2

Application in Kuka Simulation
Goal: Train the robotic arm to grasp diverse objects in a simulated environment.

Inputs: Screen observations processed into tensors.

Outputs: Continuous actions for motor control.

3

Parallelized environments were created, allowing for simultaneous experience collection.

1



Implementation Pipeline
Steps in Training the Actor-Critic Model

Environment Setup
Kuka environment: discrete timesteps, continuous action space.

Observations: Resized and normalized image frames (84x84x3).

Neural Network Architecture
Actor: Policy network outputting actions.

Critic: Value network estimating V(s).
Shared backbone for feature extraction.

Training Loop
Step 1: Collect experience in parallelized environments.

Step 2: Compute advantages A(s,a) using TD-error.

Step 3: Update actor via policy gradient.

Step 4: Update critic to minimize the loss.

Monitor & Optimize
Track cumulative rewards and analyze success rate of object manipulation.

Parallel experience collection, Adam optimizer, learning rate scheduling.



Visualization of Actor-Critic Metrics
Steady improvements across key metrics

Mean Episode Length
Tracks the average length of episodes as training progresses.

A decrease and eventual plateau in episode lengths reflect 

consistent task success.

1

Action Mean
Tracks the average of action outputs.

Increases and stabilizes, centering on preferred action outputs.

2

Action Standard Deviation
Tracks variance of actions, reflecting policy behavior over training

Despite improving action means, the increase in variance hints at a 

bit of instability.

3



Visualization of Actor-Critic Metrics

Value Error
Measures difference between predicted and actual value estimates.

No distinct pattern emerges. Small errors reflect a well-trained critic.

4

Gradient Norm
Tracks magnitude of gradients during backpropagation.

Spikes correspond to major policy updates.

Stagnant moving average indicative of stable actor and critic networks.

5

Clip Loss
Constrains how much the policy can change during training.

Fluctuations = tension between old and new policy distributions.

Stable moving average = policy ratio oscillates around the policy 

boundary but does not move too far.

6

Constant fluctuation, no noticeable trends emerge



Deep-Q-Network (DQN) Architecture

Training a DQN agent for vision-based control

Network Design
Approximates the Q-function Q(s,a) to estimate the expected return for each action given a state.

Convolutional layers capture the spatial relationships critical for robotic tasks.

1

Replay Memory
Stores transitions (state, action, reward, next state, reward) observed during interactions with environment.

Random sampling enables decorrelated updates, improving training stability and efficiency.

Cyclic buffer maintains a fixed memory capacity, overwriting old transitions.

2

Input: 5x5x48 stacked frames 

(channels-first format).

Convolutional Layers: extract 

spatial features, batch norm.
Linear Layer: flattened 

features pass by last layer.

TD-Learning and Loss Function
As part of the Bellman equation, Q-values are updated to minimize the temporal difference error.

Huber loss is used to handle noisy Q-value estimates. Robust to outliers.

3

2



Implementation Pipeline
Steps in Training the DQN Model

Environment Setup
Actions are discretized for simplicity, reducing complexity of learning in continuous action space.

Observations: Resized and normalized image frames (5,5,48)

Neural Network Architecture
Approximates the Q-function to estimate the expected return for each action given a state.

A vector size of 7 is outputted, corresponding to the Q-values for all the possible actions.

3 convolutional layers are able to capture the spatial relationships of the image-like inputs.

Training Loop
Step 1: Batches of transitions sampled randomly from replay memory.

Step 2: Target network stabilizes training, providing fixed Q-values.

Step 3: Epsilon-greedy policy encourages agent to try new actions.

Step 4: Gradient descent is used to minimize Huber loss over targets. 

Monitor & Optimize
Track performance metrics and analyze success rate of object manipulation.

Adjust hyperparameters such as learning rate, replay buffer size, etc



Visualization of DQN Metrics
Learning is gradual

Reward Density Over Episodes
Represents how concentrated the rewards are over episodes.

Distribution of rewards (0 and 1) are relatively equal.

1

Reward Frequency Over Episodes
Tracks how frequently each reward value is received in an episode.

High rewards do tend to occur as training progresses.
2

Mean Reward Over Episodes
Average reward obtained by the agent per episode.

This plateaus and shows light fluctuations, stalled learning progress.

3



Visualization of DQN Metrics
Exploration yields higher action values.

Loss Over Episodes
Refers to the error between predicted and target Q-values.

Generally low values for loss but periodic spikes display some 

instability in training

5

Q-value Over Episodes
Understand how agent’s estimates of action values evolve over time.

Increases steadily, agent learns higher action-values across episodes. 

Slight fluctuations indicate minor instability.

6

Epsilon Over Episodes
Controls the exploration-exploitation tradeoff (epsilon-greedy).

Shows how exploration decreases over time, arithmetic decay.

4



PPO Framework for Kuka Robot Simulation

Bridging Policy and Value-Based Reinforcement Learning

Algorithm Overview
Combines policy gradients and value-based learning with a policy network and value 

network to optimize agent’s policies over multiple updates/seasons

1

Why PPO?
Utilizes clipped surrogate objectives to prevent large policy updates and entropy regularization to 

prevent premature convergence

Extracts more information from each batch of experiences, improving sample efficiency

Generalized Advantage Estimation reduces variance in policy gradient estimates. 

2

Application in Kuka Simulation
Goal: Apply PPO to train a robotic arm in continuous space and optimize decision making

Inputs: Screen observations processed into tensors.

Outputs: Continuous actions for motor control.

3

Parallelized environments were created, allowing for simultaneous experience collection.

3



Implementation Pipeline
Steps in Training the PPO Model

Environment Setup
Kuka environment: discrete timesteps, continuous action space.

Observations: Resized and normalized image frames 

Neural Network Architecture
Policy Network: Determines agent’s actions by outputting probability distribution for actions

Value Network: Estimates the value of a state which represents expected total future reward 

Training Loop
Step 1: Collect trajectories (state, action, reward)

Step 2: Compute advantage using Generalized Advantage Estimation 

Step 3: Update Policy Network with clipped objective function

Step 4: Update Value Network by minimizing mean square error

Monitor & Optimize
Track cumulative rewards and analyze success rate of object manipulation.

Monitor policy loss and value loss & Adjust hyperparameters accordingly 



Visualization of PPO Metrics
Steady improvements across key metrics

Mean Reward Over Seasons
High-level indicator of the agent’s performance.

Initial mean reward decreases due to possible exploration, but then 

recovers and move upwards as policy stabilizes

1

Episode Reward Over Seasons
Provides insight into the immediate performance of the agent.

There is a steady improvement in task execution.

2

Epsilon Over Seasons
Controls the exploration-exploitation tradeoff (epsilon-greedy).

Shows how exploration decreases over time, arithmetic decay.

3



Visualization of PPO Metrics
Loss decreases with convergence issues

Beta Over Seasons
Entropy regularization manages exploration-exploitation balance.

Decreasing beta = agent is focusing on exploiting its policy.
4

Entropy Over Seasons
Measures the randomness of the agent’s policy.

Remains high = is not converging on a stable policy.

5

Loss Comparison Over Seasons
Indicates how well agent’s value function is predicting future rewards.

Clip tracks the stability of the policy update.

A decreasing overall loss = agent is improving across all components

6



Synthesizing it all
Key takeaways from these comparisons

1

3

PPO Performs Best
Adaptability to Continuous Action Spaces: Leverages its policy optimization mechanism to handle high-dimensions.

Stable Learning Dynamics: Clipped objective function and adaptive trust region control ensures stable updates.

Metrics Analysis: Outperforms - higher mean rewards, smoother convergence trends, lower variance in training loss.

DQN Performance Review
Strength in Discrete Spaces: Less suited for fine-grained control due to reliance on discretization. 

Challenges in Precision: Due to discretization, suboptimal performance in continuous domains.

Metrics Fluctuation: Reward density and Q-value over episodes exhibit significant oscillations, reflecting instability.

2

A2C Underperforms
Slow Convergence: Due to its architecture, A2C struggles to converge on optimal policies, particularly in visually 

driven tasks requiring rapid learning adaptations.

Metrics Analysis: High variability in loss metrics (value error, gradient norm, clip loss) suggests instability.



Thanks
Do you have any questions?


	Slide 1
	Slide 2: Table of Contents
	Slide 3: Motivation
	Slide 4: Table of Contents
	Slide 5: Environment
	Slide 6: Algorithms
	Slide 7: Framework
	Slide 8: Table of Contents
	Slide 9: Actor-Critic Framework for Kuka Robot Simulation
	Slide 10: Implementation Pipeline
	Slide 11: Visualization of Actor-Critic Metrics
	Slide 12: Visualization of Actor-Critic Metrics
	Slide 13: Deep-Q-Network (DQN) Architecture
	Slide 14: Implementation Pipeline
	Slide 15: Visualization of DQN Metrics
	Slide 16: Visualization of DQN Metrics
	Slide 17: PPO Framework for Kuka Robot Simulation
	Slide 18: Implementation Pipeline
	Slide 19: Visualization of PPO Metrics
	Slide 20: Visualization of PPO Metrics
	Slide 21: Synthesizing it all
	Slide 22

